Find parametric equations for the hyperbola with vertices $(\pm 4, 0)$ and foci $(\pm 6, 0)$. SCORE: /4 PTS Eliminate the parameter and write the rectangular equation for the curve represented by the parametric $x = \ln 3t$

SCORE:

equations
$$x = \ln 3t$$

 $y = 4t^2$ Write your final answer as y in terms of x.

Describe how the curves represented by the parametric equations

SCORE: /3 PTS

NOTE: Both sets of equations correspond to the rectangular equation y = 4 - x shown.

D AS t GOES FROM -00 TO 00, X=et GOES FROM ≥ 0 TO 00, GRADED BY ME

SO GRAPH STARTS WEAR Y-AXIS+GOES RIGHT/DOWN :: (2) -1 = SINT = 1, SO GRAPH OSCILLATES BETWEEN X=-1 (-1,5) AND X=1 (1,3)

Find the sum $\sum_{n=3}^{\infty} (-1)^n (21-n^2)$. You must show the terms being added.

SCORE: /3 PTS

 $-+\frac{32}{16}$ in sigma notation. Write the series SCORE:

SUBTRACT & POINT IF THE (MOEX UNDER IN THE FORMULA

Simplify the factorial expression
$$\frac{(5n)!}{(5n-2)!}$$
.

SCORE: ____/3 PTS
$$\frac{5n(5n-1)(5n-2)!}{(5n-2)!} = \frac{5n(5n-1)}{2}$$

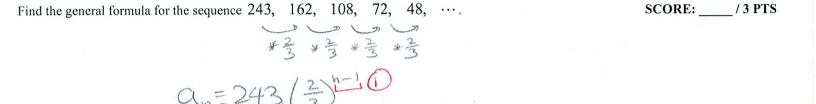
SCORE:

 $\frac{|5n(5n-1)(5n-2)!}{(5n-2)!} = \frac{|5n(5n-1)|}{(5n-2)!} = \frac{|5n(5n-1)|}$

Consider the sequence with $a_5 = 18$ and $a_{10} = 5$, and where each term is the previous term plus a fixed constant. SCORE: _____/7 PTS

[a] Find the general formula for this sequence.

$$a_5 = a_1 + 4d = 18$$
 $a_1 + 4(-\frac{13}{5}) = 18$
 $a_1 - \frac{52}{5} = 28.4$


 $a_n = \frac{45}{5} - \frac{1}{5}(n-1)$ $a_n = 31 - \frac{1}{5}n^{5}OK$

[b] Use the general formula to find the 21st term of the sequence.

$$a_{21} = 31 - \frac{13}{5}(21)$$

$$= -\frac{118}{5} = -23.6$$

[c] Find the sum of the first 21 terms of the sequence. You must show the use of a series formula.

